Confidence sets based on penalized maximum likelihood estimators in Gaussian regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confidence Sets Based on Penalized Maximum Likelihood Estimators

Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the l...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

Penalized maximum likelihood for multivariate Gaussian mixture

In this paper, we first consider the parameter estimation of a multivariate random process distribution using multivariate Gaussian mixture law. The labels of the mixture are allowed to have a general probability law which gives the possibility to modelize a temporal structure of the process under study. We generalize the case of univariate Gaussian mixture in [1] to show that the likelihood is...

متن کامل

Penalized Likelihood-type Estimators for Generalized Nonparametric Regression

We consider the asymptotic analysis of penalized likelihood type estimators for generalized non-parametric regression problems in which the target parameter is a vector valued function defined in terms of the conditional distribution of a response given a set of covariates. A variety of examples including ones related to generalized linear models and robust smoothing are covered by the theory. ...

متن کامل

Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models

Analyzing multi-layered graphical models provides insight into understanding the conditional relationships among nodes within layers after adjusting for and quantifying the effects of nodes from other layers. We obtain the penalized maximum likelihood estimator for Gaussian multi-layered graphical models, based on a computational approach involving screening of variables, iterative estimation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2010

ISSN: 1935-7524

DOI: 10.1214/09-ejs523